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Physics 110A Fall 2001 Section 1 (Strovink)

SOLUTION TO MIDTERM EXAMINATION 2

Directions: Do both problems, which have equal weight. This is a closed-book closed-note exam
except for two 81

2 × 11 inch sheets containing any information you wish on both sides. A photocopy
of the four inside covers of Griffiths is included with the exam. Calculators are not needed, but you
may use one if you wish. Laptops and palmtops should be turned off. Use a bluebook. Do not use
scratch paper – otherwise you risk losing part credit. Cross out rather than erase any work that
you wish the grader to ignore. Justify what you do. Express your answer in terms of the quantities
specified in the problem. Box or circle your answer.

Problem 1. (50 points)
A cylindrically symmetric region is bounded by
−∞ < z < ∞ and s < s0 (s is the cylindrical
radius in Griffiths’ notation). Within this re-
gion, the magnetic field may be obtained from
the vector potential

A(s) = ẑµ0Cs2 ,

where C is uniform, i.e. independent of r. (You
don’t need to choose a particular gauge in order
to work this problem, but, if it is helpful, you
may work in Lorentz gauge ∇·A+ ε0µ0∂V/∂t =
0.)
(a) (15 points)
For this part, take C to be a (positive) constant,
i.e. independent of time t as well as r. Calculate
the current density J, flowing within this region,
that produces A. The direction and sign of your
answer are important. (In this application, note
that

4π
µ0
A(r) �=

∫
J(r′)
|r− r′|dτ ′ ,

because the current-carrying region is infinite in
extent.)
Solution:
Combining Ampère’s law with Griffiths’ vector
identity (11),

µ0J = ∇×B

= ∇× (∇×A)

= ∇(∇ ·A)−∇2A

= 0− 1
s

∂

∂s
s

∂

∂s
ẑµ0Cs2

J = −ẑ C
1
s

∂

∂s
2s2

= −ẑ 4C .

Notice that A and J point in opposite direc-
tions!
The above is the most direct path to the result.
Alternatively, one may first evaluate B:

B = ∇×A

= −φ̂
∂Az

∂s

= −φ̂ 2µ0Cs ,

where the term in the middle equation includes
the only nonvanishing derivative in the curl.
Then

µ0J = ∇×B

=
ẑ

s

∂

∂s
sBφ

= − ẑ

s

∂

∂s
s2µ0Cs

J = −ẑ 4C .

(b) (20 points)
For this part, take C to be a decaying function
of time, i.e.

C(t) = C0 exp (−t/τ) ,

where C0 and τ are positive constants. Consider
a rectangular loop drawn at constant azimuth φ,
bounded by 0 < z < z0 and 0 < s < s0. Cal-
culate the EMF E around this loop (the sign of
your answer won’t be graded).
Solution:
The electric field is easily calculated from

E = −∇V − ∂A
∂t

.



The potential term integrates to zero around the
loop and thus plays no role. Because A is in the
ẑ direction and vanishes on the z axis, the only
contribution to the integral comes from the outer
segment where s = s0 and dl = ẑdz. Proceeding
counterclockwise around the loop,

E =
∮
E · dl

= −
∮

∂A
∂t

· dl

= −
∫ 0

z0

∂

∂t
ẑµ0C0s

2
0 exp (−t/τ) · ẑdz

=
∫ 0

z0

µ0C0s
2
0 exp (−t/τ)

τ
dz

= −µ0C0s
2
0z0 exp (−t/τ)

τ
.

The above is the most direct path to the result.
Alternatively, one may first calculate the mag-
netic flux Φ through the loop, then obtain E from
its time derivative. This flux is most easily evalu-
ated by performing the line integral of A around
the loop. Again proceeding counterclockwise,

Φ =
∮
A · dl

=
∫ 0

z0

µ0C0s
2
0 exp (−t/τ)dz

= −µ0s
2
0z0C0 exp (−t/τ) .

This same flux may also be obtained by integrat-
ing B from part (a). Proceeding counterclock-
wise around the loop, da is in the φ̂ direction,
opposite to the direction of B. Therefore the flux
is negative. Performing the integration,

B = −φ̂ 2µ0Cs

Φ =
∫
B · da

= −
∫ s0

0

ds

∫ z0

0

dz 2µ0Cs

= −µ0s
2
0z0C

= −µ0s
2
0z0C0 exp (−t/τ) .

With the same flux calculated either way, Fara-

day’s law yields the EMF:

E = −dΦ
dt

= −µ0C0s
2
0z0 exp (−t/τ)

τ
.

(c) (15 points)
If you were asked to calculate the current density
J for the conditions of part (b), where A decays
with time, would you expect J to have the same
dependence on s within our cylindrical region
that you obtained in part (a)? Why or why not?
Solution:
Now that conditions are not static, Maxwell’s
corrected version of Ampère’s Law is needed:

µ0J = ∇×B− µ0ε0
∂E
∂t

.

Though ∇×B has no s-dependence within our
cylindrical region, the contribution of dE/dt to
J is proportional to s2, as is A itself. Therefore
the Maxwell-corrected J will not have the same
s-dependence as in part (a).

Problem 2. (50 points)
A nickel (five-cent coin) of radius a and thickness
d 	 a carries a uniform permanent magnetiza-
tion

M = ẑM0 ,

where M0 is a positive constant and ẑ is the
nickel’s axis of cylindrical symmetry.
(a) (30 points)
Calculate the magnetic field B(0, 0, 0) at the cen-
ter of the nickel. The direction of B is important;
express B to lowest nonvanishing order in d/a.
Solution:
The volume magnetization M yields a bound
surface current Kb =M× n̂. Therefore Kb van-
ishes on the nickel’s flat surfaces, and is equal to
φ̂M0 on its curved surface. A surface current on
this thin curved strip d 	 a is equivalent to a
line current Ib = Kbd. Therefore B at the cen-
ter is the same as the field from a circular loop.



Applying the Biot-Savart law,

4π
µ0I

dB(r = 0) =
dl′ × (r− r′)

|r− r′|3

=
φ̂sdφ × (−ŝ)

s2

= ẑ
dφ

a

B(0) = ẑ
µ0Kbd

2a

= ẑ µ0M0
d

2a
.

(b) (20 points)
In the plane z = 0, draw counterclockwise a
large circular loop s = b 
 a that is centered on
the nickel. What magnetic flux Φ flows through
this loop? The sign of Φ is important; express Φ
to lowest nonvanishing order in d/b.
Solution:
Far from the nickel, the field is that of a magnetic
dipole with moment

m = ẑ M0πa2d .

But the perfect-dipole approximation breaks
down when we get close to the nickel, so it’s
tough to calculate Φ by integrating B over the
loop’s inner area.
The most straightforward approach uses the fact
that the flux Φ through a loop is the integral of
A around the loop; the dipole approximation for
A will work well at the boundary of the loop,
where b 
 a. First calculate A:

4π
µ0
A =

m× r̂

r2

=
M0πa2d

r2
ẑ × (ẑ cos θ + ŝ sin θ)

=
M0πa2d

b2
ẑ × ŝ

= φ̂
M0πa2d

b2

A = φ̂
µ0M0a

2d

4b2
.

Since A is in the azimuthal direction, its line
integral around the large circle is just 2πbA, so

Φ = µ0πa2M0
d

2b
.

Note that, as b → ∞, all the flux through the
nickel is returned within the large circle, so
Φ→ 0.
The above is the most direct path to the result.
An alternative approach starts from the equation

∮
B · da = 0 .

Choose a closed surface consisting of the plane
z = 0 plus the hemispherical cap r =∞. The cap
makes no contribution to the integral because B
from a dipole diminishes as r−3. The plane can
be divided into s < b and s > b. Since the surface
integral over the plane vanishes, the inner and
outer portions give equal and oppposite contribu-
tions. We evaluate the outer portion because the
dipole approximation works well in that region.

Φ =
∫ b

0

ds

∫ 2π

0

s dφ Bz

= −
∫ ∞

b

ds

∫ 2π

0

s dφ Bz .

In the plane z = 0, with m̂ = ẑ, the dipole’s
magnetic field is

4πr3

µ0m
B = 3(m̂ · r̂)r̂ − m̂

4πs3

µ0m
B = 3(ẑ · ŝ)ŝ − ẑ

= −ẑ

B = −ẑ
µ0m

4πs3

= −ẑ
µ0πa2M0d

4πs3

= −ẑ
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4s3
.

Performing the integral over the outer region,

Φ = −
∫ ∞

b

ds

∫ 2π

0

s dφ
(
−µ0a

2M0d

4s3

)

=
µ0a

2M0d

4
2π

∫ ∞

b

ds

s2

= µ0πa2M0
d

2b
.


